面试必备排序算法 - 选择排序

本贴最后更新于 1172 天前,其中的信息可能已经沧海桑田

选择排序(Selection sort)是一种简单直观的排序算法。

算法原理

第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零。

有无序列表

[3,44,38,5,47,115,36,26,27,2,46,4,19,50,48]

进行选择排序,步骤如下:

  1. 第一轮从第一个元素开始与下一个元素进行比较,记录较小的元素,再和下下个元素进行比较,记录较小的元素,进行14次比较后找到整个列表中的最小数ls[min],将它与ls[0]交换位置。
  2. 第二轮第二个元素开始与下一个元素进行比较,记录较小的元素,再和下下个元素进行比较,记录较小的元素,进行13次比较后找到从第二个元素开始的列表中的最小数ls[min],将它与ls[1]交换位置。
  3. 第三轮....
  4. 第十四轮第十四个元素开始与下一个元素进行比较,找到最后两个元素中的最小数将它与ls[1]交换位置,自此排序完成。

849589201710152247195901433219824.gif

根据上面的步骤归纳总结:

n个元素的列表,需要n-1轮选择排序。每轮选择排序需要的比较次数为n-1-轮次

代码实现

def selection_sort(l):
    n = len(l)
    for i in range(n - 1):  # 进行n-1轮选择排序
        min_index = i  # 预设最小值索引为未排序部分的第一个数
        for j in range(i + 1, n):
            if l[min_index] > l[j]:
                min_index = j
        # 将最小元素放到每次排序的第一个位置
        l[i], l[min_index] = l[min_index], l[i]


ls = [3, 44, 38, 5, 47, 115, 36, 26, 27, 2, 46, 4, 19, 50, 48]

selection_sort(ls)
print(ls)

运行结果:

[2, 3, 4, 5, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50, 115]

分析总结

1. 时间复杂度

2. 空间复杂度

在选择排序算法过程中,临时占用存储空间大小不变,空间复杂度为O(1)

3. 稳定性分析

序列5,8,5,2,9经过一遍选择后,第一个元素5回合2交换,那么原序列中两个5的相对前后顺序就破坏了,所以选择排序是一个不稳定的排序。

4.应用分析

交换操作所需cpu时间比比较所需的cpu时间多,当n值较小时,选择排序的交换操作远小于冒泡排序,此时应当使用选择排序。

1 操作
877649301 在 2021-08-30 21:54:44 更新了该帖
回帖
请输入回帖内容 ...